本文最后更新于92 天前,其中的信息可能已经过时,如有错误请发送邮件到2098333240@qq.com
from unsloth import FastLanguageModel
from datasets import load_dataset
from trl import SFTTrainer
from transformers import TrainingArguments
import torch
# 加载模型 这个模型是我自己的路径 根据自己模型的不同 填写不同的路径
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="/mnt/workspace/DeepSeek-R1-Distill-Qwen-7B",
max_seq_length=2048,
dtype=torch.bfloat16,
load_in_4bit=False,
device_map="cuda",
offload_folder=None,
)
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
# 加载数据集 数据集一样也是自己的路径 下载路径:# https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT
dataset = load_dataset("json", data_files="/mnt/workspace/medical-o1-reasoning-SFT/medical_o1_sft.json", split="train")
dataset = dataset.select(range(500))
print(f"数据集大小: {len(dataset)}")
# 定义提示模板
train_prompt_style = """Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.
Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.
### Instruction:
You are a medical expert with advanced knowledge in clinical reasoning, diagnostics, and treatment planning.
Please answer the following medical question.
### Question:
{}
### Response:
<think>
{}
</think>
{}"""
EOS_TOKEN = tokenizer.eos_token
# 定义格式化函数
def formatting_prompts_func(examples):
inputs = examples["Question"]
cots = examples["Complex_CoT"]
outputs = examples["Response"]
texts = []
for input, cot, output in zip(inputs, cots, outputs):
text = train_prompt_style.format(input, cot, output) + EOS_TOKEN
texts.append(text)
return {"text": texts}
# 格式化数据集
dataset = dataset.map(formatting_prompts_func, batched=True)
print("第一条格式化数据:", dataset["text"][0])
# 配置 LoRA
model = FastLanguageModel.get_peft_model(
model,
r=16,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
lora_alpha=16,
lora_dropout=0,
bias="none",
use_gradient_checkpointing="unsloth",
random_state=3407,
)
# 训练参数
training_args = TrainingArguments(
output_dir="/mnt/workspace/medical-o1-finetuned",
per_device_train_batch_size=2,
gradient_accumulation_steps=4,
num_train_epochs=1,
learning_rate=2e-4,
fp16=False,
bf16=True,
logging_steps=10,
save_steps=100,
max_grad_norm=0.3,
warmup_steps=10,
)
# 初始化 trainer
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=2048,
args=training_args,
)
# 开始微调
trainer.train()
# 保存模型
model.save_pretrained("/mnt/workspace/medical-o1-finetuned/model")
tokenizer.save_pretrained("/mnt/workspace/medical-o1-finetuned/tokenizer")